If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+12x-48=0
a = 16; b = 12; c = -48;
Δ = b2-4ac
Δ = 122-4·16·(-48)
Δ = 3216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3216}=\sqrt{16*201}=\sqrt{16}*\sqrt{201}=4\sqrt{201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{201}}{2*16}=\frac{-12-4\sqrt{201}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{201}}{2*16}=\frac{-12+4\sqrt{201}}{32} $
| 18x^2=162 | | 15c-11c-c-2c=19 | | 1/5x=10/3 | | 120=8(-6v+3) | | 3(x+1)-4x=3 | | x-7/3-1=x-7/2 | | (58)(x)=576 | | 2=1.50x+2x | | 16w-12=-4 | | 4x-(7x+12)+6=-33 | | m+37.50=127.75 | | 2-p/3=30 | | (2x)(288)=576 | | 2x+1.50=2x | | 12z-10z+5z=14 | | 10-3x=4x+45 | | 4x+11=-61 | | 9a/15=10a-7 | | 18t-18t+t+2t=16 | | 5(x+20)=7x+ | | 2x-14-1=3x-21 | | 8^2-43x-30=0 | | 6a−5(a−2)+9=−11 | | 25x+4=429 | | 7k-(6-2k)=12 | | 4(3x-9)=-42 | | t+10-4+t=11 | | 11z-4z-6z+z=6 | | 15+p/2=3p | | 4.6+1.4n=1.10 | | 5x+48-3x=24 | | k+5=20k |